Project Report

System Simulation @ Burger King

EGRM 6617

System Simulation

Kishan Patel
Sainath Baragada
Abdulwaheb O. Abulgasem

Date:05/04/2017

Table of Content

Sr. No.	Topic	Page No.
$\mathbf{0}$	Group Identification	3
$\mathbf{1}$	Executive Summary	3
$\mathbf{2}$	Introduction of Project Focus Area	3
$\mathbf{3}$	Problem Statement	3
$\mathbf{4}$	System Analys is	4
$\mathbf{5}$	Input Data Collection and Analysis	6
$\mathbf{6}$	Conceptual Simulation Model	15
$\mathbf{7}$	ARENA Simulation Model	16
$\mathbf{8}$	Model Validation	21
$\mathbf{9}$	Initial Performance Analysis (Base model)	23
$\mathbf{1 0}$	Test of the Scenarios with Process Analyzer (PAN), Output Analys is (OA) and OptQuest.	24
$\mathbf{1 1}$	Proposed Performance Improvement Scenarios	27
$\mathbf{1 2}$	Animation	28
$\mathbf{1 3}$	Conclusion \& Recommendations	28

0. Team \& Group Name Identification

Team Name: Simulation Rockers.
Team Member: Kishan Patel, Sianath Baragada, Abdulwahab O. Abulgasem

1. Executive Summary

Burger King is one of the fastest growing fast food chain in the USA. Burger King is an American global chain of hamburger fast food restaurants. Headquartered in the unincorporated area of Miami-Dade County, Florida, the company was founded in 1953 as InstaBurger King, a Jacksonville, Florida-based restaurant chain. The growth then become exponential in coming years. With growth comes are much difficult responsibilities of customer satisfaction. There starts coming of the complains regarding the servicing times and waiting time.

In the project, we tried to understand these problems at a local Burger King. With the help of Arena Simulation software, we tried to analyze and study the system for reducing the wait time and servicing time. With the help of ARENA, we simulated the actual working of system at burger king, then for validation With the help of PAN, we come up with different scenarios. That helped to come up with solution at the end.

2. Introduction of Project focus area

During first team meeting, with the help of brainstorming and initial discussion all agreed to do system simulation project in the field of service industry. So, we tried to search around for the location of business of such kind.

Project focus area: Fast Food restaurant- Burger King

Location: 644 Campbell Avenue, West Haven CT- 06516
Type of system: Service based system. The location seems to be busy so, we thought of using system simulation methods to analyses the working and running of the system and give recommendations.

3. Problem statement

The first problem what we have seen there is long queue and more waiting time. The restaurant seems to be busy most of the time. The downtown street of West Haven and crossing with many residency around it makes it busier.

During our research over there we noticed that there are less number of employee working during the busy time of the day-Lunch Time. Due to these is usually a queue of 2-3 customer. There is two cashier machine but only one was used always when we were taking the data, making long wait time during lunch time.

The motivation came for choosing this topic for project is our own experience during the visits over there. The restaurant seems to be busy during day time and at night on weekends. Usually during our visits, we all have seen that there is always waiting time in queue. So, it gave us thought to check and make a real-time simulation model for the store and give recommendations.

We are using Arena 15.0 simulation software for our project.

4. System Analysis

4.1 Graphical Representation of the system

There is fixed layout of the store. The store has two entrance and there is sitting of almost 70 customers. The store also has Drive-Thru. The store has shift based working system of the employee. The drive-thru employee are just focused on giving service to the drive-thru and some employee gives service to instore. There is just one cashier for instore activities.

The store has accessibility for disabled also.
The following simple layout of the store shows basic parts and system of it.

Figure 1: Graphical layout of system

4.2 Objective of the system

The main objective of the system is proper utilization of resource which we think is not properly used. The objective is based on our observation that only one cashier is used when the store is on the pick time of business. The resource such are wasted and same time making conjections in the system. So, we got the objective that we must give the result regarding proper utilization of resource and making waiting time less. There were only six Employee working with one cashier. The store was designed such that only some Employees is allocated the drive-thru and some are given the in-store order.

4.3 Elements of the system

The elements of the system are; customers, cashier, employees, grill machine, fryer, coke machine, tables, frozen freezer, raw materials required for making burger, and others. The elements are mostly obtained locally. Like the main customers are the local people from West Haven, any very little from the from interstate. The use of grill machine is used to make sandwich for them and frozen is used to store the frozen products. Fryer are used to make fries and all.

Simply it could include:

- Employees
- Customers
- Machines
- Raw materials such as; Bun, Frozen products, vegetables etc.

4.4 Type of system

The type of system that could best describe the system is Dynamic/Discrete/Stochastic/Open system
Following are the reasons for these type of system

- Dynamic: It is because the system is affected by change in time. Time is the factor that is analyzed.
- Discrete: Because the arrival of customers is one by one and not continuous as a line. Also, the arrival is countable so these is discrete type.
- Stochastic: It is because the arrival of eutomer is in random way.
- Open system: The system can be affected by any other things from outside so it is open in nature.

4.5 Variables of the system

The variable is the generally time dependent. The variance noted in the variable is of importance in the simulation. In study of the store we have considered \# of customers serviced during the noting of time. Also, interarrival time and service time are also variable as they are influenced by order and time of the day. Waiting and queue time are also of importance.

4.6 Parameters of the system

Parameters are \# of employee working during particular time of the day, sitting capacity of the store, \# of cashier working, data collection time is also parameter in the system. Some are controllable parameter and some are uncontrollable parameter.

4.7 Feedback or causal relations (Relationships)

The relationships in the system are space based and time based. As the machine and type of products are having space based relationship. There is also a dependent relationship between fryer and frozen. As the frozen machine and fryer are adjacent steps from fries and frozen foods. The same is with grill and frozen.

4.8 System performance metrics

- Minimum/Maximum/Average length of queue,
- Minimum/Maximum/Average waiting time for the customers/service time,
- Minimum/Maximum/Average utilization (resource schedule) with efficiency of workers which are the major performance metrics

4.9 Constants of the system

Anything that can't be changed over time is constants in the system. The layout of the system is one of constant parameter in the system. The positions of the machine and time of operation of the store.

4.10 Constraints of the system

Constraints of the system are one that is having restriction for further use then allotted. Example number of employee in the shifts, number of workers can work, supply, maximum number of customers allowed in the store by city, capacities of the machines.

4.11 Environment around the system

The environment around the store is very dynamic in the sense that there is always moment of cars, buses, people and more. There is bus stand near by which also makes it busier place. And there is exit for interstate that also impact the business of the store.

4.12 Subsystems

No subsystems are presents.

5 Input Data Collection and Analysis

Data for the simulation were collected from the location directly with the help of team mates. The strategy for collection of data was to take the help of stopwatch and visually noting the timings of the customer as they pass the point where the timing was to be taken. The timings were noted on the sheet made specially made to take time.The data were collected for following days and time

- Wednesday - Afternoon and Evening
- Saturday - Afternoon and Evening

Figure 2: Points of timing that were taken

The data were taken then the timings were placed in Excel file for further help in analysis. The timings were taken with following rule.

- Interarrival Time: The time difference between the arrival of customers. The time depends on the rate of arrival.
- Waiting Time: The time difference between the customers’ arrival and the time he starts to place his/her order. These will give the waiting time in the queue.
- Order Time: The time difference between the customer placing and finishing the order. These times can help in analysis the complexity of placing the order if the customer is new/old.
- Service Time: The time difference between the customer finishing his/her order and getting food. The time will help in analysis the service timing and its effects.

5.1 Initial Raw Data

The following is the data from Wednesday-Afternoon and Evening

Wednesday(Afternoon) Time: 12:40 PM Date: 03/01/2017									
						Raw Data in seconds			
Customer Number	Arrival Time	Queuing Time	Ordering Time	Service Time		Interarrival Time	Waiting Time	Ordering Tiime	Service Time
	10:00:15	0:00:26	0:02:00	0:09:39		15	11	94	459
	0:02:09	0:02:15	0:04:30	0:07:26		114	06	135	176
	0:08:50	0:09:00	0:09:50	0:12:40		401	10	50	170
	40:09:30	0:09:52	0:10:52	0:14:25		40	22	60	213
	0:12:09	0:12:14	0:12:55	0:15:41		159	05	41	166
	0:15:50	0:15:52	0:17:10	0:20:19		221	02	78	189
	0:16:55	0:17:20	0:17:55	0:20:34		65	25	35	159
	0:18:09	0:18:17	0:19:35	0:20:51		74	08	78	76
	0:18:35	0:19:40	0:20:20	0:22:10		26	65	40	110
10	0:20:30	0:20:35	0:21:15	0:23:38		115	05	40	143
11	0:22:35	0:23:05	0:23:50	0:26:10		125	30	45	140
12	0:23:50	0:24:54	0:25:15	0:28:50		75	64	21	215
13	0:24:00	0:25:33	0:26:45	0:31:55		10	93	72	310
14	0:25:03	0:26:58	0:27:40	0:28:20		63	115	42	40
15	0:29:30	0:29:45	0:30:45	0:32:45		267	15	60	120
16	0:30:59	0:31:33	0:32:50	0:34:45		89	34	77	115
17	0:31:30	0:34:00	0:34:31	0:36:21		31	150	31	110
18	0:31:50	0:34:40	0:35:20	0:38:30		20	170	40	190
19	0:33:45	0:35:25	0:36:50	0:42:50		115	100	85	360
20	0:34:50	0:36:53	0:37:10	0:37:30		65	123	17	20
21	0:35:38	0:37:14	0:39:00	0:42:24		48	96	106	204
22	0:38:48	0:39:10	0:40:20	0:43:50		190	22	70	210
23	0:39:07	0:40:25	0:43:07	0:44:15		19	78	162	68
24	40:39:20	0:43:20	0:44:13	0:46:45		13	240	53	152
25	0:40:40	0:44:13	0:44:40	0:49:35		80	213	27	295
26	0:44:30	0:45:20	0:46:20	0:49:29		230	50	60	189
27	0:47:00	0:47:09	0:47:30	0:49:35		150	09	21	125
28	0:47:15	0:47:35	0:48:31	0:51:15		15	20	56	164
29	0:47:32	0:51:18	0:52:35	0:55:12		17	226	77	157
30	0:48:37	0:52:54	0:54:06	0:55:48		65	257	72	102
31	0:49:00	0:54:11	0:54:59	0:56:15		23	311	48	76
32	0:51:36	0:55:00	0:56:10	1:00:10		156	204	70	240
33	0:51:42	0:57:13	0:57:53	1:01:09		06	331	40	196
34	0:53:00	0:59:15	1:00:06	1:01:58		78	375	51	112
35	0:54:42	1:00:25	1:01:49	1:02:29		102	343	84	40
36	0:54:50	1:01:52	1:02:35	1:06:14		08	422	43	219
37	0:56:10	1:02:38	1:03:53	1:07:34		80	388	75	221
38	0:56:30	1:03:56	1:04:27	1:09:17		20	446	31	290
39	0:58:00	1:04:30	1:06:50	1:09:32		90	390	140	162
40	1:02:08	1:06:58	1:09:41	1:12:00		248	290	163	139
	1:02:15	1:08:44	1:09:00	1:11:00		07	389	16	120
	1:04:38	1:09:42	1:10:15	1:11:30		143	304	33	195
	1:05:14	1:10:28	1:11:28	1:17:05		36	314	60	337
	1:05:20	1:11:38	1:12:19	1:15:00		06	378	41	161
	1:06:50	1:12:20	1:13:03	1:17:30		90	330	43	267

Wednesday|(Evening] Time: 08:00 PM Date: 03/01/2017

1	0:00:43	0:00:48	0:01:56	0:04:16
2	0:03:01	0:03:06	0:03:45	0:06:35
3	0:10:00	0:10:05	0:11:15	0:13:11
4	0:13:43	0:13:46	0:14:32	0:15:22
5	0:15:12	0:15:15	0:15:45	0:16:07
6	0:22:59	0:23:55	0:23:52	0:25:00
7	0:23:09	0:23:59	0:24:19	0:27:27
8	0:24:15	0:25:42	0:26:54	0:29:39
9	0:25:15	0:26:09	0:26:54	0:29:39
10	0:26:14	0:27:35	0:28:49	0.33:40
11	0:30:35	0:30:58	0:31:29	0:33:00
12	0.35:50	0:35:5	0:36:12	0.37:10

13	$0: 355: 59$	$0: 36: 16$	$0: 36: 38$
14	$0: 36: 15$	$0: 36: 40$	$0: 37: 44$
15	$0: 38: 07$		

15	$0: 43: 20$	$0: 43: 22$	$0: 44: 50$
	$0: 4730$		
16	$0: 44: 50$	$0: 44: 52$	$0: 45: 50$
	$0: 48: 30$		
17	$0: 44: 52$	$0: 455: 56$	$0: 46: 35$
18	$0: 49935$		

18	0:45:13	0:46:39	0:47:35	0:50:59
19	0:46:35	0:4739	0:49:38	0:53:13
20	0:47:10	0:49:42	0:50:51	0.55:30

21	0:52:14	0:52:15	0.52:50	0:56:3
22	0:54:20	0.54:25	0.55:29	0:57:2

23	0:59:08	0.59:10	1:00:15	1:02:39
24	1:01:54	1:01:56	1:02:48	1:03:39

25	1:02:00	1:02:58	1:03:45	1:05:29
26	1:04:31	1:04:33	1:0:30	1:07:53
				$1 \cdot 10$

27	1:08:11	1:08:14	1:08:42	1:10:37
28	1:08:13	1:08:47	1:09:12	1:09:25

29	$1: 12: 366$	$1: 12: 38$	$1: 13: 49$
30	$1: 15: 14$	$1: 15: 16$	$1: 16: 15: 50$
		$1: 17: 10$	

31	1:16:39	1:16:42	1:17:19	1:19:18
32	1:18:27	1:18:29	1:19:10	1:20:49

33	1:19:49	1:19:54	1:21:07	1:23:
34	1:19:49	1:21:10	1:22:21	1:25:

35	$1: 24: 11$	$1: 24: 13$	$1: 25: 07$	$1: 26: 49$
36	$1: 24: 12$	$1: 25: 10$	$1: 26: 20$	$1: 28: 17$

37	$1.25 \cdot 11$	12620	127.10	5
38	1:27:10	1:27:11	1:28:07	1:30:59
39	1:28:34	1:28:3	1:29:10	1:31:10
40	1:31:10	1:31:11	1:31:55	1:32:39
41	1.33:10	1:33:12	1.34:10	1:36:02
42	1:35:11	1:35:12	1:36:12	1:38:10
43	1.35:12	1:36:15	1.37:10	1:39:11
44	1.15:14	1:37:18	1:38:10	1:40:19
45	1:37:10	1:38:18	1:38:5	1:42:10

The following is the data from Saturday-Afternoon

Saturday(Atternoon) Time:1:00PM Date:03/04/2017						Raw Datain seconds			
$\begin{aligned} & \text { Customer } \\ & \text { Number } \end{aligned}$									
	Arinalime	reving Time		Time		Interrivilime	Waiting Tine O	eoordeingTime	e Sence Time
	$0: 0018$	0.0025	0.0:205	0.07:78		18	07	170	363
	0.0037	00:1215	0.0 .55	0.0750		19	98	84	12.233
	0.0150	0:3:36	0.0432	0.10 .56		73	76	68	66
	0.02126	0.05:10	0.0559	0.1219		156	4	44	19 380
	0.0617	0.0829	0.0904	0.1356		111	122	${ }^{35}$	35.292
	0.0712	0.0911	0.1005	0.1656		55	119	(94	4411
	0.0927	0.1012	0.1131	0.1885		135	45	159	1942
	$0.10: 18$	0.1412	$0.15: 90$	0.1555		4	24	44	546
	0.1358	0.1516	0.1600	0.1711		230	78	8 51	1
10	0.1740	0.175	0.1838	0.2656		231	13	36	464
11	0:1813	0.1840	$0: 1988$	02128		24	27	768	18.10
12	0.1946	$0: 2025$	0.2156	0.3:15		93	39	99	91.6
13	0.2410	0.2430	0.2549	0.2855		264	20	019	$9 \quad 186$
14	0.52 .28	0.2635	$0: 7718$	0.2914		78	6	43	13.116
15	0.771 .16	0.275	$0: 2817$	031:01		108	36	$6{ }^{25}$	15.164
16	030:14	031:04	0.3235	0.3524		178	50	0 91	19.16
17	031:06	0.32:33	033:15	037:03		52	97	72	22.28
18	03220	033:10	033033	03810		74	50	50	324
19	037:29	0.3715	033828	0.3854		309	06	16 53	3312
20	0.3746	0.3833	039909	0.4.00		17	47	786	$36 \quad 29$
21	0:00:27	0:00:16	0:1128	0.4434		16.	19	192	12.186
2	$0: 4035$	0.4139	0:4228	0.4.42		08	64	44	19.134
23	0:420	0.454	0.4530	0.4725		105	159	4436	$36 \quad 115$
2	0.43111	0.4535	$0: 4611$	0.7710		5.	144	4 36	$36 \quad 59$
25	0.4118	0:46:14	0.4759	0.5029		6	116	$6{ }^{105}$	155
26	0.4559	0:48:9	0.4853	0.5130		10.	130	(44	445
2	0.4933	0.5050	$0: 5135$	0.5338		24	77	74	15.123
28	0.5130	0.5216	0.5324	0.56 .11		111	46	16.68	18.16
2	0.5125	0.5328	0.5415	0.56 .66		05	113	34	7151
30	0.515	0.5422	0.5450	0.5659		22	145	15	$18 \quad 12$
3.	0.5332	0.5454	0.5538	0.5826		95	82	12.4	44168
32	0.54 .5	0.5550	0.5630	0.5845		63	75	540	10.15
33	0.5440	0.5618	0.5755	10:103		0.5	128	8 6	7118
34	0.5001	0.5158	0.5850	103:10		14.	57	$7{ }^{5}$	22.20
35	0.5932	1:0:25	10:129	1.0350		15.	,	364	44 141
36	10:118	1:0:50	1:03:25	105:18		106	32	12.95	$15 \quad 113$
37	1:3:30	1:0010	1:0572	106:13		102	69	93	331
38	103:36	1.055	10.050	10909		46	129	95	${ }_{5} 519$
39	1.0623	1.0659	1:8276	$1.10: 11$		15	36	68	37105
40	10:741	1.0832	1:09:18	11.12		78	51	46	16.123
4.	100:78	10:942	1.0954	112:45		0	114	12	1217
42	1.1083	1.0959	$1: 1026$	1.1438		49	82	122	27.25
43	1.0922	111126	$1: 1145$	1.15 .26		45	124	19	1921
4	$11: 358$	11.4045	11.458	11.653		26	0	$7{ }^{53}$	3115
45	1.1410	115:94	1.1610	1.1819		12	54	44 66	$16 \quad 129$

Saturday(Evening] Time: 1:00PM Date:03304/2017					Raw Datain seconds			
$\begin{aligned} & \text { Custoner } \\ & \text { Number } \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { Arival } & \text { a } \\ \text { Time } & \text { Tir } \end{array}$	Queuing Time	$\begin{array}{\|l\|} \hline \text { Order } \\ \text { Time } \end{array}$	$\begin{aligned} & \text { Senice } \\ & \text { Time } \end{aligned}$	Iteariviline			Senie
	0:0023	0.0058	0:0:14	0.0417	23	35	76	123
	0.00115	0.02:23	0.0336	0.0531	52	68	13	115
	0.0012	0:03:49	0.0438	0.0026	08	146	49	108
	0.0156	0.0453	0.0558	0.0651	33	17	65	53
	0.0248	0.0643	0.075	0:0928	52	235	69	${ }^{96}$
	$0.051 / 14$	0.0758	0.0846	0.1129	146	164	48	163
	0.0623	0.0850	$0: 1041$	0.14 .15	69	147	11	24
	0.0064	0.10 .55	$0: 1235$	0.1456	21	25.	100	14
	0.00112	0.1212	$0: 1353$	0.1600	28	330	71	136
10	0.0911	$0: 1358$	0:1437	0.1544	119	281	39	6
11	0.1239	0.1448	0.1559	0.17:12	208	129	71	13
12	0.1588	0.1653	0.1738	0.1954	189	65	45	136
13	0.1655	0.1749	$0: 1927$	$0.2: 17$	6	54	98	170
14	$0.19,45$	0.1956	02100	0.2253	170	11	65	112
15	0.2116	0.2188	$0: 2222$	0.255	91	32	34	203
16	0.2412	0.2420	0.2539	0.2732	176	08	79	113
17	0.52 .23	0.25 .55	0.275	0.3011	7.	22	130	136
18	0.28:19	0.2854	0.2988	0.3215	176	35	54	15
19	0.2854	030:00	032212	0.3358	35	66	141	9
20	030022	03229	033949	0.3651	88	12	80	182
2	0.3216	0.335	03542	0389	114	97	109	150
22	03519	03558	0.3721	0.3943	183	39	83	142
23	033620	0.3759	0.3846	0.4254	6.	99	47	288
24	033748	0.4018	04112	0:4,19	88	150	54	18
25	0.3926	04120	0.4256	0.4453	98	114	96	111
26	0:4351	0.4119	0.455	0.4828	265	28	98	15
27	0:4412	0.4658	0:88:14	0.5123	2	116	76	18.
28	0:4424	0481.19	0.9910	0.515	12	25.	51	16
29	0.455	0.4916	0.50:17	0.5325	88	204	61	188
30	0.4555	0.5023	0.5117	0.53:49	03	268	54	15
3	0.4956	0.5153	0.52:4	0.5522	24.	117	51	15
32	0.50414	0.5248	0.5415	0.5600	45	127	87	112
33	0.50:52	0.5428	0.5599	0.5828	11	216	81	159
34	0.5137	0.5556	0.57:12	0.95956	33	265	76	16.
35	0.5324	0.5711	0.5918	1:0:190	113	233	121	18.
36	0.5645	0.5927	1:00:4	1:3:34	20.	159	83	174
37	0.5821	10:052	1:0232	1:0455	96	15	10	193
38	0.58510	10:2071	10.339	1.06:24	30	236	52	165
39	0.59:4	$103: 35$	1:0458	1.065	53	24.	73	11
40	1:00:13	1.05:33	1.05:36	1:08:2	29	200	43	146
4	1:0039	1.055	1.0633	1.0839	26	313	41	126
42	1:00:5	106:00	1:0722	1:0944	16	365	49	138
43	${ }^{10.0326}$	10:393	1.1085	$1: 1115$	15.	248	80	14
4	1:0452	1.1085	1:095	$1: 1128$	86	26	53	9
45	1.0649	1.0957	1:1036	1:12:19	117	188	39	103

The red and yellow marks are the outliers in the data.

5.2 Data after removing outliers

The outliers were found with the help of rule of thumb. It is used to find the UCL and LCL so that the outliers can be found from the data. The UCL/LCL can be found with the help of Mean ± 2.5 standard deviation.

Following are the data after removing the outliers

Wednesday(Afternoon)			
After Removal of Outliers			
Interarrival Time	Waiting Time	Ordering Tiime	Service Time
15	11	94	176
114	06	135	170
40	10	50	213
159	22	60	166
221	05	41	189
65	02	78	159
74	25	35	76
26	08	78	110
115	65	40	143
125	05	40	140
75	30	45	215
10	64	21	310
63	93	72	40
267	115	42	120
89	15	60	115
31	34	77	110
20	150	31	190
115	170	40	360
65	100	85	20
48	123	17	204
190	96	106	210
19	22	70	68
13	78	53	152
80	240	27	295
230	213	60	189
150	50	21	125
15	09	56	164
17	20	77	157
65	226	72	102
23	257	48	76
156	311	70	240
06	204	40	196
78	331	51	112
102	375	84	40
08	343	43	219
80	422	75	221
20	388	31	290
90	446	140	162
248	390	16	139
07	290	33	120
143	389	60	195
36	304	41	337
06	314	43	161
90	378		267
	330		

Wednesday(Evening)			
After Removal of Outliers			
Interarrival Time	Waiting Time	Ordering time	Service Time
43	05	68	140
138	05	39	170
419	05	70	116
223	03	46	50
89	03	30	22
10	06	47	68
66	50	20	188
60	87	72	165
59	54	45	165
261	81	74	231
315	23	31	91
09	05	17	58
16	17	22	89
425	25	64	61
90	02	88	160
02	02	58	160
21	64	39	180
82	86	56	204
35	64	69	215
304	01	35	221
126	05	64	117
288	02	52	84
166	02	47	51
06	58	57	104
151	02	28	143
220	03	25	115
02	34	71	13
263	02	49	110
158	02	37	65
85	03	41	119
108	02	73	99
82	05	71	129
00	81	54	169
262	02	70	102
01	58	50	117
59	69	56	160
119	01	34	172
84	02	44	120
156	01	58	44
120	02	60	112
121	01	55	118
01	63	52	121
02	124	35	129
116	68		197

Page | 10

Saturday(Afternoon)

After Removal of Outliers
Interarrival Waiting Ordering Service

Time	Time	Time	Time

| 18 | 07 | 100 | 343 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llll}19 & 98 & 42 & 293\end{array}$
$\begin{array}{llll}73 & 76 & 86 & 384\end{array}$

156	44	49	380

$\begin{array}{llll}111 & 132 & 35 & 292\end{array}$
$55 \quad 119 \quad 54 \quad 411$
$135 \quad 45 \quad 79 \quad 424$
$\begin{array}{llll}41 & 78 & 57 & 46\end{array}$

230	03	51	64

$\begin{array}{llll}231 & 27 & 46 & 100\end{array}$
$\begin{array}{llll}24 & 39 & 68 & 69\end{array}$
$\begin{array}{llll}93 & 20 & 91 & 186\end{array}$

264	67	79	116

78	36	43	164

108	50	25	169
178	97	91	238

$\begin{array}{llll}52 & 50 & 22 & 247\end{array}$

74	06	53	26

17	47	53	291

$\begin{array}{llll}161 & 19 & 36 & 186\end{array}$
$\begin{array}{llll}08 & 64 & 42 & 134\end{array}$
$105 \quad 154 \quad 49 \quad 115$
$\begin{array}{llll}51 & 144 & 36 & 59\end{array}$
$67 \quad 116 \quad 36 \quad 150$
$101 \quad 130 \quad 105 \quad 157$
$\begin{array}{llll}214 & 77 & 44 & 123\end{array}$
$117 \quad 46 \quad 45 \quad 167$
$05 \quad 113 \quad 68 \quad 151$

22	145	47	129

$\begin{array}{llll}95 & 82 & 28 & 168\end{array}$
$\begin{array}{llll}63 & 75 & 44 & 135\end{array}$
$05 \quad 128 \quad 40 \quad 188$
$\begin{array}{llll}141 & 57 & 67 & 260\end{array}$
$\begin{array}{llll}151 & 53 & 52 & 141\end{array}$
$\begin{array}{llll}106 & 32 & 64 & 113\end{array}$
$\begin{array}{llll}102 & 69 & 95 & 31\end{array}$

46	129	93
157	36	55

78	51	87	123

07	114	46	171

$49 \quad 82 \quad 12 \quad 252$
$\begin{array}{llll}45 & 124 & 27 & 221\end{array}$

276	07	19	115

$\begin{array}{llll}12 & 54 & 53 & 129\end{array}$ 66

Saturday(Evening)
After Removal of Outliers

Interarriv al Time	Waiting Time	Ordering Time	Service Time
23	35	76	123
52	68	73	115
08	146	49	108
33	177	65	53
52	235	69	96
146	164	48	163
69	147	111	214
21	251	100	141
28	330	71	136
119	287	39	67
208	129	71	73
189	65	45	136
67	54	98	170
170	11	65	112
91	32	34	209
176	08	79	113
71	22	130	136
176	35	54	157
35	66	80	97
88	127	109	182
114	97	83	150
183	39	47	142
61	99	54	187
88	150	96	117
98	114	98	151
21	28	76	189
12	166	51	167
88	235	61	188
03	204	54	152
241	268	51	157
45	117	87	112
11	127	81	159
39	216	76	164
113	265	121	181
201	233	83	174
96	159	100	143
30	151	52	165
53	236	73	117
29	241	43	146
26	290	41	126
16	313	49	138
151	345	80	141
86	248	53	97
117	246	39	103
	188		

Figure 3: Normality Plot for All the timings
Here it can be seen that some data are following normal distribution and some are not following normal distribution.

Descriptive Statistics:
I

Sum of										
Variable	Mean	SE	Mean	StDev	Squares	Minimum	Q1	Median	Q3	Maximum
Interarrival Time Wed-AF	82.0		10.6	70.4	509145.0	6.0	20.0	69.5	115.0	267.0
Ordering Time Wed-AF	57.16		4.27	27.98	173388.00	16.00	40.00	51.00	75.00	140.00
Service Time Wed-AF	169.6		11.6	77.0	1520849.0	20.0	116.3	163.0	212.3	360.0
Waiting Time Wed-AF	166.2		22.1	148.5	2213381.0	2.0	22.0	115.0	312.5	446.0
Interarrival Time Wed-Ev	121.9		17.0	112.8	1200403.0	0.0	24.5	89.5	164.0	425.0
Ordering Time Wed-Eve	50.53		2.59	16.98	121927.00	17.00	37.00	52.00	64.00	88.00
Service Time Wed-Eve	124.18		8.08	53.58	801954.00	13.00	89.50	118.50	165.00	231.00
Waiting Time Wed-Eve	26.82		5.06	33.54	80022.00	1.00	2.00	5.00	58.00	124.00
Interarrival Time Sat-AF	94.1		10.9	72.2	613965.0	5.0	42.0	78.0	139.5	1276.0
Ordering Time Sat-AF	55.11		3.45	23.11	160176.00	12.00	41.00	51.00	68.00	276.
Service Time Sat-AF	179.7		15.2	100.6	1855605.0	26.0	115.3	154.0	244.8	105
Waiting Time Sat-AF	71.41		6.42	42.61	302436.00	3.00	40.25	65.50	113.75	
Interarrival Time Sat-Ev	85.09		9.64	63.97	494564.00	3.00	29.25	70.00	118.50	154.00
Ordering Time Sat-Eve	70.80		3.57	23.68	244647.00	34.00	51.00	71.00	83.00	241.00
Service Time Sat-Eve	140.16		5.46	36.22	920757.00	53.00	113.50	141.50	164.75	130.00
Waiting Time Sat-Eve	159.2		14.2	95.1	1538216.0	8.0	67.0	151.0	238.5	214.00
										345.0

Above is the display for descriptive timing for all the timing taken. The data gives very good explanations for working of system. All the data here are in seconds. The interarrival time for is weekday in afternoon is less that because it was lunch time, it's almost 1:30 mins. And during these times only the service time is more in comparison with evening on weekdays.

The important thing to note is waiting for week day afternoon and weekend evening is almost same. It is due to lunch time on weekday and busy on weekend is due to all being free at that time. It about $2: 30$ mins. The service time is almost same for all the days and time. The service time is almost of 3 mins .

So it came out that on an average 7:30-8 mins for all the stuffs before you starts eating.

5.3 Input analysis

Analysis for Wednesday afternoon time

Analysis for Wednesday Evening time

Analysis for Saturday aftemoon time

Analysis for Saturday Evening time

The following table show the distribution details

Day	Time	Timing Taken	Type of distribution	Distribution Details
Wednesday	Afternoon	Interarrival Time	Weibull	6+WEIB(68, 0.764)
		Ordering Time	Normal	NORM(57.2,27.7)
		Waiting Time	Beta	2+444*BETA(0.40+0.683)
		Service Time	Normal	NORM(170,76.1)
	Everning	Interarrival Time	Beta	-0.001+425*BETA(0.398,0.754)
		Ordering Time	Normal	NORM(50.5,16.8)
		Waiting Time	Triangular	TRIA $(13,119,231)$
		Service Time	Beta	.999+123*BETA(0.258,0.972)

Day	Time	Timing Taken	Type of distribution	Distribution Details
Saturday	Afternoon	Interarrival Time	Beta	5+271BETA(0.693,1.41)
		Ordering Time	Triangular	TRIA (11.5,48.3,106)
		Waiting Time	Beta	3+151*BETA(0.957,1.16)
		Service Time	Triangular	TRIA $(26,130,424)$
	Everning	Interarrival Time	Weibull	3+WEIB(84,1.08)
		Ordering Time	Triangular	$\operatorname{TRAI}(33.5,48.4,131)$
		Waiting Time	Beta	8+337*BETA(0.946,1.16)
		Service Time	Normal	NORM(140,35.8)

6 Conceptual Simulation Model

Figure 2: Flow Chart for the System

7 ARENA Simulation Model

The following is the overview model for simulation with the help of Arena for Burger King system analysis. The model shows that it is having multiple arrival for different days and for different times. The model has different run parameters. The model then has Decide Module for checking the condition for different times and different types of days in week like weekday and weekend.

As can be seen that after Decide Module there are two Process Modules. These modules are for Ordering and Service Times for the systems. And as the data were taken for different days and different times they are made for individual types of days. The module is made with the expression that we got from Input Analyzer and the expression are kept in a table in 4.3 Section of Input Analysis.

As can be seen that the model is having four Create Modules, eight Decide Modules and eight Process Modules. With these there is module created for fake entity. The Assign Module is created for counting the fake entities that would be generated during the running of simulation. The model will be explained in following section.

7.1 Resources and Entities

There are two Entity in the model. One is Customer and Other is Fake Entity. The Customer is Entity made for Customer Arrival and Fake Entity is one that is not matching with the Decision Modules.

The Resource is a set of four as there are four Employees that are working. And it is assumed that the pay of all the employees are $\$ 10 /$ hrs .

Resource - Basic Process									
	Name	Type	Capacity	Busy / Hour	Idle / Hour	Per Use	StateSet Name	Failures	Report Statistics
1 ,	Cashier1 \downarrow	Fixed Capacity	1	10	10	0.0		0 rows	\square
2	Kishan	Fixed Capacity	1	10	10	0.0		0 rows	\square
3	Abdul	Fixed Capacity	1	10	10	0.0		0 rows	\square
4	Sai	Fixed Capacity	1	10	10	0.0		0 rows	\square
5	Nath	Fixed Capacity	1	10	10	0.0		0 rows	\square

7.2 Creation of different expression for different Modules.

Expression Table

Expression Name	Time	Timing Taken	Type of distribution	Distributiion Details
Weekday Lunch	Afternoon	Interarrival Time	Weibull	6+WEIB(68, 0.764)
Weekday Cashier Lunch		Ordering Time	Normal	NORM(57.2,27.7)
Weekday Service Lunch		Service Time	Normal	NORM(170,76.1)
Weekday Dinner	Everning	Interarrival Time	Beta	-0.001+425*BETA(0.398,0.754)
Weekday Cashier Dinner		Ordering Time	Normal	NORM(50.5,16.8)
WeekDay Service Dinner		Service Time	Beta	.999+123*BETA(0.258,0.972)
Weekend Lunch	Afternoon	Interarrival Time	Beta	5+271BETA(0.693,1.41)
Weekend Cashier Lunch1		Ordering Time	Triangular	TRIA(11.5,48.3,106)
Weekend Service Dinner		Service Time	Triangular	TRIA $(26,130,424)$
Weekend Dinner	Everning	Interarrival Time	Weibull	3+WEIB(84,1.08)
Weekend Cashier Dinner 1		Ordering Time	Triangular	TRAI(33.5,48.4,131)
Weekend Service Dinner 1		Service Time	Normal	NORM(140,35.8)

Expression - Advanced Process							
	Name	Comment	Rows	Columns	Data Type	File Name	Expression Values
1 -	Weekday Lunch				Native		1 rows
2	Weekday Dinner				Native		1 rows
3	Weekend Lunch				Native		1 rows
4	Weekend Dinner				Native		1 rows
5	Weekday Cashier Lunch				Native		1 rows
6	Weekday Cashier Dinner				Native		1 rows
7	Weekend Cashier Lunch1				Native		1 rows
8	Weekend Cashier Dinner1				Native		1 rows
9	Weekday Service Lunch				Native		1 rows
10	Weekday Service Dinner				Native		1 rows
11	Weekend Service Lunch1				Native		1 rows
12	Weekend Service Dinner1				Native		1 rows

The expression followed would be the one that is explained in Section 4.3 of Input Analysis.

7.3 Create Modules for different Interarrivals

These are the Create Modules created for Interarrival of the Customer Entity. The Unites for all the modules are in Seconds as can be seen in the screenshot below with the Expression they are following according to Expressioon Table.

Create-Basic Process								
	Name	Entity Type	Type	Expression	Units	Entities per Arrival	Max Arrivals	First Creation
1 >	Weekday Arrival Lunch	Customer	Expression	Weekday Lunch	Seconds	1	Infinite	0.0
2	Weekday Arrival Dinner	Customer	Expression	Weekday Dinner	Seconds	1	Infinite	21601
3	Weekend Arrival Lunch	Customer	Expression	Weekend Lunch	Seconds	1	INFINITE	0.0
4	Weekend Arrival Dinner	Customer	Expression	Weekend Dinner	Seconds	1	Infinite	21601

7.4 Decide Modules

The Decide Module are used to check the condition for weekday/weekend and Lunch/Dinner. The condition are
 made to filter the entities and let the right entity pass the condition according to the time and type of day.

The Check Condition for Lunch/Dinner is done with the help of CalHour(Tnow) function. In the function 0 is 12 is midnight and it is in 24 hr system. So it will return a
integer from $0-23$ according to TNOW. The Lunch time is 11 AM to 5 PM daily and Dinner is from 5 PM to 11 PM is considered.

The check condition for Weekday/Weekend are done using CalDayOfWeek function in Arena. In this function 1 is considered as Sunday and as follows the rest days.

Decide		?	X
Name:	Type:		
Check Weekday	\checkmark	2-way by Condition	\checkmark
If:			
Expression v			
Value:			
CalDayOfWeek(TNOW)			

Decide - Basic Process					
	Name	Type	If	Value	
1	Check Weekday	2-way by Condition	Expression	CalDayOfWeek(TNOW)>= 2 \& \& CalDayOfWeek(TNOW) <= 6	
2	Check Weekday Lunch	2-way by Condition	Expression	CalHour(TNOW)<=17 \&\& CalHour(TNOW)>=11	
3	Check For Weekday	2-way by Condition	Expression	CalDayOfWeek(TNOW)>= 2 \& \& CalDayOfWeek(TNOW) < 6	
4	Check Weekday Dinner	2-way by Condition	Expression	CalHour(TNOW)>17 \&\& CalHour(TNOW)<=23	
5	Check Weekend	2-way by Condition	Expression	CalDayOfWeek(TNOW) ==1 \|	CalDayOfWeek(TNOW) ==7
6	Check Weekend Lunch	2-way by Condition	Expression	CalHour(TNOW)<=17 \& \& CalHour(TNOW) $>=11$	
7	Check For Weekend	2-way by Condition	Expression	CalDayOfWeek(TNOW) ==1 \|	CalDayOfWeek(TNOW) ==7
8	Check Weekend Dinner	2-way by Condition	Expression	CalHour(TNOW)>17 \&\& CalHour(TNOW)<=23	

The all the Decide Module table is shown above with the condition it is following and the Value of that condition.

7.5 Process Modules

The process module is for ordering and service. The Ordering Process has the expression of arrival according to the expression generated from the input analyzer. Same is the case for the Service Process Modules. There are eight order and service module. The Ordering is for Cashier Process and Servicing is for Servicing Process. In Cashier Process the resource used is Cashier1 and for Service Process the Resource used is Set of 4 employees.

Below shows example for Weekday Lunch. Same would be case for different arrivals.

Below table shows the other process and the condition they are following. The resouces they are using the arrival entities are accoring to the specified expression.

Process - Basic Process										
	Name	Type	Action	Priority	Resources	Delay Type	Units	Allocation	Expression	Report Statistics
1	Cashier Lunch	Standard	Seize Delay Release	Medium(2)	1 rows	Expression	Seconds	Value Added	Weekday Cashier Lunch	\square
2 '	Service Lunch	Standard	Seize Delay Release	Medium(2)	1 rows	Expression	Seconds	Value Added	Weekday Service Lunch	\square
3	Cashier Dinner	Standard	Seize Delay Release	Medium(2)	1 rows	Expression	Seconds	Value Added	Weekday Cashier Dinner	V
4	Service Dinner	Standard	Seize Delay Release	Medium(2)	1 rows	Expression	Seconds	Value Added	Weekday Service Dinner	■
5	Weekend Cashier Lunch	Standard	Seize Delay Release	Medium(2)	1 rows	Expression	Seconds	Value Added	Weekend Cashier Lunch1	\checkmark
6	Weekend Service Lunch	Standard	Seize Delay Release	Medium(2)	1 rows	Expression	Seconds	Value Added	Weekend Service Lunch1	\square
7	Weekend Cashier Dinner	Standard	Seize Delay Release	Medium(2)	1 rows	Expression	Seconds	Value Added	Weekend Cashier Dinner1	\square
8	Weekend Service Dinner	Standard	Seize Delay Release	Medium(2)	1 rows	Expression	Seconds	Value Added	Weekend Service Dinner1	\square

7.6 Assign Modules

The Assign Module is used because to check and count the Fake entity.

7.7 Record Module

The record module is used for recording the customer out at the same time calculating the cost of the serving the customers.

The expression is according to the usage/idle/busy condition of the employees.

7.8 Dispose Module

The dispose module is used for disposing the entity be it Fake or Customer Entity.

7.9 Run Parameters

- Number of Replication: 7
- Warm Up time: 1 Hour
- Replication Length: 7 Days
- Hours Per Day: 24 Hours
- Base time Units: Seconds

8 Model Validation.

For validating our model, we used Read/Write Module to extract the model data from actual running of simulation model. The process is using assign module for attributing the process start time and same way at the end again with the help of assign module storing the TNOW in that assign module subtracting the TNOW from previous assign Module. The value is then stored in the Read/Write Module.

All the data that are generated are stored in a notepad and with that data and the actual data that we collected are kept in Minitab for validation. Our data did not follow the normal distribution so we tried to validate on the parameter of comparison of Median as base. The test is done according to Kruskal-Wallis Test.

The screenshot below show that the model is validating as the p -value is grater then 0.05 for all the three timings.

Kruskal-Wallis Test: Interarrival Time versus Group Id Arrival
Kruskal-Wallis Test on Interarrival Time
Group Id

Arrival	N	Median	Ave Rank	Z
0	44	69.50	160.7	0.98
1	253	40.08	147.0	-0.98
Overall	297		149.0	

$H=0.95$	$D F=1$	$P=0.329$
$H=0.95$	$D F=1$	$P=0.329 \quad$ (adjusted for ties)

Kruskal-Wallis Test: Cashier Time versus Group Id Cashier
Kruskal-Wallis Test on Cashier Time

Group Id

Cashier	N	Median	Ave Rank	Z
0	43	151.00	64.0	-7.01
1	253	137.17	162.9	7.01
Overall	296		148.5	

```
H}=49.09 DF=1 P=0.067
H = 49.09 DF = 1 P = 0.067 (adjusted for ties)
```


Kruskal-Wallis Test: Service Time versus Group Id Service

Kruskal-Wallis Test on Service Time
Group Id

Service	N	Median	Ave Rank	Z
0	44	163.0	142.1	-0.50
1	251	175.8	149.0	0.50
Overall	295		148.0	

$\begin{array}{lll}H=0.25 & D F=1 & P=0.617 \\ H=0.25 & D F=1 & P=0.617 \quad \text { (adjusted for ties) }\end{array}$

9 Initial Performance Analysis (Base model)

From the initial report of the model it seems that the problem that was there in real world seems to be still there. The analysis shows that the Cashier is the most utilized resource. The problem observed is due to just one Cashier the problem of Waiting time is continuing. At the same time the less employee is making service queue bigger.

Below shows some of the initial Report.

Usage					
Total Number Seized	Average	Half Width	Minimum Average	Maximum Average	
Abdul	832.57	15.92	812.00	859.00	
Cashier1	3170.57	47.10	3126.00	3268.00	
Kishan	1462.14	21.25	1426.00	1498.00	
Nath	335.29	15.47	315.00	364.00	
Sai	540.57	22.55	506.00	583.00	
3200.000					
2800.000					
2400.000					
2000.000					
1600.000					Lekishien
1200.000					
800.000					
400.000					
0.000					
Scheduled Utilization					
	Average	Half Width	Average	Average	
Abdul	0.2136	0.00	0.2106	0.2196	
Cashier1	0.3035	0.00	0.3005	0.3076	
Kishan	0.2903	0.00	0.2855	0.2927	
Nath	0.07577547	0.00	0.07177598	0.08205265	
Sai	0.1452	0.01	0.1369	0.1562	

10 Test of the Scenarios with Process Analyzer (PAN), Output Analysis (OA) and OptQuest

10.1 Process Analyzer (PAN)

With the help PAN we generated different scenarios on the bases of problem observed in the initial report. We tried to make scenarios by increasing the employees, replications, and cost. The control for the PAN were all the resources and number of Reps. And the Response that we wanted to study of the customer wait time and the cost of increasing the employees. The utilization of the employees was also an important response to study.

Below shows different scenarios with different control and the response is generated according to it.

	Scenario Properties				Controls						System.NumberOut	Customer:Wa itime	Total Customer	Cashier 1. Utiif zation	Kishan.Utiliza tion	Res
	S	Name	Prooram File	Reps	Abdul	Cashier 1	Kishan	Nath	Sai	Num Reps						$\begin{array}{\|c\|} \hline \text { Cashier } \\ \text { Dinner:Queu } \\ \hline \end{array}$
	A	Baseline	3: burgerkin	7	1.0000	1.0000	1.0000	1.0000	1.0000	7	23932.714	75.766	2061450	0.304	0.290	20.829
2	A	Weekday Service	3 : burgerkin	7	1.0000	2.0000	2.0000	1.0000	1.0000	7	24073.143	6.590	2079544	0.152	0.153	2.049
3	A	ncreasing Replicatil	3 : burgerkin	40	1.0000	1.0000	1.0000	1.0000	1.0000	40	24045.950	77.019	2059005	0.306	0.292	20.598
4	A	ncrerasing Employ	3 : burgerkin	7	2.0000	2.0000	2.0000	2.0000	2.0000	7	24056.714	4.866	4643276	0.153	0.149	1.893
5	A	Changing Cashier	3: burgerkin	7	1.0000	2.0000	1.0000	1.0000	1.0000	7	24024.429	11.720	2050939	0.152	0.275	2.152
6	A	Removing Employe	3 : burgerkin	7	0.0000	1.0000	0.0000	1.0000	1.0000	7	24066.714	686.931	0	0.307	0.000	19.753
7		Removing Least Util	3: burgerkin	7	1.0000	1.0000	1.0000	0.0000	1.0000	7	24047.143	101.665	1990141	0.308	0.311	19.775
8	A	ncreasing Most Util	3: burgerkin	7	2.0000	1.0000	1.0000	1.0000	1.0000	7	24058.143	86.183	4567293	0.304	0.286	19.738
9	0	Checking for Utiliza	3: burgerkin	7	0.0000	1.0000	0.0000	1.0000	1.0000	7	24066.714	686.931	0	0.307	0.000	19.753
10	A	Cost	3:burgerkin	7	2.0000	2.0000	2.0000	1.0000	1.0000	7	24052.857	5.283	4636395	0.154	0.151	1.874

Responses												
System.NumberOut	Customer.Wa itTime	Total Customer	$\begin{gathered} \text { Cashier1.Utiii } \\ \text { zation } \end{gathered}$	Kishan.Utiliza tion	Cashier Dinner. Queu	Cashier Lunch. Queue	Service Lunch.Queue	System.Total Cost	Abdul.Utilizati on	Kishan.Utiliza tion	Sailutilization	Cashier1. Bus yCost
23932.714	75.766	2061450	0.304	0.290	20.829	87.600	3.204	8400.000	0.214	0.290	0.145	509.910
24073.143	6.590	2079544	0.152	0.153	2.049	6.950	3.515	11760.000	0.199	0.153	0.138	510.635
24045.950	77.019	2059005	0.306	0.292	20.598	93.026	3.662	8400.000	0.216	0.292	0.146	513.410
24056.714	4.866	4643276	0.153	0.149	1.893	6.895	0.023	16800.000	0.105	0.149	0.071	513.818
24024.429	11.720	2050939	0.152	0.275	2.152	7.034	12.792	10080.000	0.207	0.275	0.148	509.270
24066.714	686.931	0	0.307	0.000	19.753	96.605	958.516	5040.000	0.000	0.000	0.386	516.029
24047.143	101.665	1990141	0.308	0.311	19.775	100.027	31.915	6720.000	0.244	0.311	0.183	517.699
24058.143	86.183	4567293	0.304	0.286	19.738	95.136	0.469	10080.000	0.116	0.286	0.141	511.215
24066.714	686.931	0	0.307	0.000	19.753	96.605	958.516	5040.000	0.000	0.000	0.386	516.029
24052.857	5.283	4636395	0.154	0.151	1.874	7.089	0.619	13440.000	0.107	0.151	0.140	517.739

Graphical Analysis of the scenarios.

$\underset{\text { Total Customer Cost }}{\text { Tot Cost by Scenario }}$

10.2 Output Analysis (OA)

From the output analyzer, we compared the base model and with different cycle time scenarios and we find out that there is a significant difference between all four different scenarios. So, we concluded that our model is verified and satisfied customer requirement of less ordering and service time.

The screenshot below shows the same.

10.3 OptQuest

For OptQuest we tried to study the problem what was observed in initial report and that found in PAN. The cost was of major importance and waiting time. For the problem, we defined different constraints, controls, objectives. The screenshot below tries to explain all.

- Constraints.

Glilil Best Costing				$\triangle 1\|D\| \boldsymbol{x}$
Constraints				
Constraints Summary				
Included	Name	Type	Description	Expression
\square	Busy VS Idle	NonLinear		[Abdul. BusyCost] + [Cashier1....
\square	Number in Queue	NonLinear		[Cashier Lunch.Queue.Numbe...
V	Number of Employee	Linear		[Abdul] + [Cashier1] + [Kishan] ...
V	Waiting Time	NonLinear		[Cashier Dinner.Queue.Waitin...

- Different Objective

Will Best Costing					
Objectives					
Objectives Summary					
	Included	Name	Type	Goal	Expression
-	\square	Costing	Linear	Minimize	
	\square	Wating Time	Nonlinear	Minimize	[Cashier Dinner.Queue.WatingTime] + [Cashier Lunch.Queue.WatingTime] + [Sevice Dinner.Queue.Wait...
	V	Best Cosing	Nonlinear	Minimize	

- Result for Best Costing Objective

- Optimization of Best Costing objective

Giliil Best Costing*

11 Proposed Performance Improvement Scenarios

As Per all the Process Analysis (PAN) that is done for the scenarios we came up with best case scenario that the store should increase one more cashier to reduce the wait time at low cost rather than increasing the service employee. The utilization should be increased with more productive working. For customer satisfaction, we need to reduce the wait time and ordering time. We also suggest to use Kaizen methods to decrease the wait and ordering time.

13 Conclusions

- With the help of all analysis we came up with the conclusion that the queue in the system is mostly due to difference in interarrival time and servicing time. The interarrival time is almost half of the service time. These is making the working of system complicated
- By doing these the service time and customer service will improve

From the above analysis, we came to know that the system working is little complicated due to only one cashier working. The complication can be reduced if there is more number of employees and cashier for instore ordering.

- Here we saw that the arrival time of the customer is less than the service time. These is the reason that makes the queue in the store. We would conclude by give recommendation that the store should increase the employment so as decrease the servicing time. It's almost double for all time except for Wednesday evening time.

